
GPGPU in the Most Avid Communication
Medium: Emails

Prachi Goyal Juneja, R.K.Pateriya

CSE, M.Tech Scholar

Maulana Azad National Institute of Technology
Bhopal(M.P) India-462001

Abstract- Email communication has gained lots of importance
in the world lately. With the boundaries increasing in
dimensions, it has become tough to rely on physical medium of
communication due to delays. Internet being available
anywhere and everywhere makes it convenient and gives
portability and flexibility to work from multiple locations.
GPGPU’s have decreased the processing time and made the
work faster and more usable. To gain most out of the
GPGPU’s, one needs to understand the architecture of the
same and also the terminologies used and the programming
languages used.
Keywords - GPGPU, graphics processing unit, parallel
processing, parallel programming, OpenCL, Cuda.

I. INTRODUCTION
With the increase in computer usage around the globe and
dependency structure routing towards computer at each
stage, it is utmost important to make full and proper use of
the CPU and provide maximum efficiency to the user. One
can see the use and application of software devices in every
walk of life: Science, Medicine, Education, Astronomy,
Molecular Physics, and Neural Networks. With the increase
in applications, the complexity increases and for coping up
with a world where time is money, one needs to understand
the importance of each and every second rather every nano-
second. The information is nowadays stored in digital
memories in enormous sizes that is rapidly growing. The
challenge is to extract the relevant piece of information
quickly. Hence we see the growth of data intensive
applications [1][2]. Such applications can benefit from
parallel computing in improving performance and for better
data management.
Parallel Computing is use of multiple computer resources at
the same time to solve a computation problem. In parallel
computing a problem is broken down into various parts and
each part is solved concurrently. A series of instructions
from each part are executed simultaneously on different
processors and an overall control mechanism is used.
In the real world where most of the events are uncertain it
is most likely to use parallel computation instead of serial.
One can see the wide use of parallel computing in the field
of : galaxy formations, climate change, rush traffic hours,
weather, defense, Geology, data mining, financial
modeling, graphics and the list goes on. Some of the major
benefits of using parallel computing are:
I. Helpful in solving larger problems

II. Provides concurrency
III. Use of non local resources
IV. Saves time and money

II. EVOLUTION OF PARALLEL COMPUTING
For a long time parallel computing [2] went unnoticed, as
many thought it will never cope up with the computing
scenario. During the 19th century parallel computing started
evolving; [3] one can go back to the 1980’s for the
beginning of parallel computing. The major reasons for
parallel computing evolution during this time are:

I. Advances in the hardware
II. Growth of research and development

III. Algorithms supporting parallel machines
Very rapidly we saw that over the years parallel computing
slowly and steadily evolved and took shape. It was since
2010 that GPU became an important component of the PC,
initially for good resolution in games, and media. Till now
data used to flow from the CPU to the GPU. Then
gradually there were developments in the data transport
technologies and the one way data floe became two way
data flow. Thus very rapidly the technology progressed in
the recent past and the GPU usage was actively improved
and increased from just a drawing tool to a very efficient
processing unit.

III. WHAT IS GPGPU?
GPGPU [2] stands for General-purpose computing on
graphics processing units. GPGPU often termed as GPU, is
the use of graphic processing unit along with the CPU to
fasten scientific, engineering and enterprise applications.
GPU accelerated computing shows unmatchable increase in
application performance. This is done by allocating the
compute intensive portions of the task or application to the
GPU, while the remaining code runs on the CPU.

Fig. 1 CPU GPU code distribution

Prachi Goyal Juneja et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4552-4555

www.ijcsit.com 4552

A CPU has few cores to carry out sequential serial
processing whereas in case of GPU there are thousands of
cores, smaller and more efficient. These are designed to
handle multiple tasks simultaneously. This is why GPU’s
can run algorithms 100 times faster than CPU’s.
Algorithms that can be executed on GPGPU’s should have
the following two properties:
i. Data Parallelism: Data parallel means that an operation

can be performed on different data elements
simultaneously by a processor.

ii. Throughput Intensive: Since there are high
computations involved, the amount of data elements is
in abundance and the algorithm will process them in
parallel.

The best suited and widely used area of GPGPU’s
remained to be pixel- based applications such as video and
image processing, but with advancement in the GPGPU
field applications that have heavy numerical computing and
linear algebra operations are also well suited for GPGPU
technology.
Some areas where GPGPU based applications are widely
used are: Research, Supercomputing, Defense and
Intelligence, Finance, Fluid Dynamics, CAD, Automations,
Animation, Simulation, Media, Oil and Gas, Biology,
Chemistry and the list is endless.

IV. GPGPU ARCHITECTURE
A GPGPU consists of large number of streaming
multiprocessors(SM), which can be increased in number.
These SM’s are connected to the Interconnection network
through which they can access multiple memory
controllers. [4]

Fig. 2 GPGPU architecture

When an application code is given to the processor, the
serial code is executed by the CPU and the compute
intensive code is passed on to the GPU where stream
processing occurs in parallel.
Each SM contains: [5]
 Thousands of registers to be allocated to execution

threads
 Caches

o shared memory
o constant cache

o texture cache
o L1 cache

 Warp schedulers
 Stream Processors to carry out operations


Fig. 3 GPGPU architecture

Figure 3 depicts a general architecture of GPU, some high
end GPU’s can have additional parts as well.

V. GPGPU: BASICS AND ITS FEATURES
GPGPU’s are great for data parallelism. They are designed
for tasks that are highly parallel. The GPU architecture as
discussed above is ALU heavy, i.e., there is lots of compute
power and multiple vertex and pixel pipelines are available.
GPU’s are designed to stream data, they hide memory
latency. The GPGPU terminology is discussed here:
 Arithmetic Intensity: It refers to computations or math

operations.
 Streams: A set of records that have to undergo the

same type of computation. They provide data
parallelism.

 Kernels: Functions applied to each element in the
stream. The elements in a stream should be
independent of each other.

The applications targeted to be run on GPU should have:
 High parallelism
 High arithmetic intensity
 Minimum dependency between data elements
 Huge data sets
 Lot of work to be done without CPU intervention

Before writing code for any application an algorithm is set
into place. These CPU algorithms are to be mapped with
the GPU. The various mapping constructs are:
 Basics: [6]

o Arrays/ streams Textures
o Parallel loops Quads

Prachi Goyal Juneja et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4552-4555

www.ijcsit.com 4553

o Loop body  vertex + fragment program
o Output arrays  render targets
o Memory read  texture fetch
o Memory write frame buffer write

 Controlling the parallel loop:[6]
o Rasterization = Kernel Invocation
o Texture Coordinates = Computational Domain
o Vertex Coordinates = Computational Range

As discussed the GPU’s follow the SIMD (Single
Instruction Multiple Data) [7] execution model. If you take
a closer view at the memory model it follows shared
memory access. At the programming model level we see a
wide use of C/C++ along with the extensions to do
programming of GPGPU’s. CUDA and OPENCL are two
famous programming forms that support the same.
Each technology comes with its ups and downs and so is
the case with GPGPU programming. It has some
advantages as well as disadvantages, though the advantages
take a head over the disadvantages, but it’s necessary to be
aware of all the pros and cons .[7]
Advantages:
 Fast
 Energy efficient
 Cheap
 Load sharing of CPU
Disadvantages
 Comparatively hard to program
 Not all algorithms might necessarily have speedup
 The industry needs to mature more

VI . PARALLEL PROGRAMMING LANGUAGES
GPGPU’s were designed mainly for graphics and later the
multi-core concept spread widely to computational
problems. GPU’s can process independent pieces of tasks
in parallel. GPGPU’s are mainly used for stream
processing, i.e., similar computations to be applied on
different set of data in parallel. One important point to be

noted is that GPGPU’s never have stared data,[8] because
processing is performed in parallel and independently.
Since GPGPU is used widely for applications that are
critical in nature, hence they are bound to have high
arithmetic intensity. If it’s not so then the delay in
accessing memory will result in computational delay. The
computations performed by the GPU are generally handled
by the CPU [9]. Parallel computing systems today have
more than one CPU or GPU in a single machine for faster
computation and performance. In the beginning of the CPU
+ GPU systems, languages with an extension of C like
Brook and Cg were used [10].
The most widely used GPGPU computing language present
today is OpenCL (Open Computing Language). OpenCL
provides framework that is usable for writing programs
over heterogeneous platforms having CPU’s, GPU’s and
other processors. It includes a programming language to
write kernels for computation. OpenCL has a feature
available to support task parallel programming patterns,
which are required for multicore architecture.[9]
Another dominant framework available for parallel
computing is Nvidia’s CUDA(Compute Unified Device
Architecture). The CUDA platform is available for users
through libraries and extension to standard languages like
C, C++ and Fortran. The CUDA programs contain the
conventional language host code and GPU device functions
[11]. In CUDA the programmer is not responsible for
thread management, it is done implicitly.

VII. COMPARATIVE STUDY: OPENCL AND CUDA
With the advent of parallel programming languages, one
needs or make a decision about choosing the language as
per the requirement and usability. Cuda and OpenCL are
similar in many respects like both are focused on data
parallel computation model [12]. Both use C based
languages for device programming. Apart from the
similarities there is a huge range of differences also.

 OPENCL CUDA

What is it?
Hardware architecture, programming
language, API, SDK and tools

Open API and language specification

Open technology? Not open Open and royalty free
Started in? 2006 2008
SDK Vendor Nvidia Implementation Vendor
Multiple vendors No Yes
Vendors Nvidia Nvidia, Apple, IBM, AMD
Device Support Only Nvidia Heterogeneous device support
Terminology(Execution) [12] NDRange Grid
 Workgroup Threadblock
 Workitem Thread
 Global ID Thread Id
 Block Id Block Index
 Local ID Thread Index
Terminology (Memory) Host memory Host memory
 Global Memory Global or device memory
 Global memory Local memory
 Global memory Texture memory
 Local Memory Shared memory
 Private memory Registers
Programming
Language versions Base language versions are defined [15] Only C and C++

Prachi Goyal Juneja et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4552-4555

www.ijcsit.com 4554

 OPENCL CUDA
 features supported

Work items access Through built in functions
Through built in
variables

Vector types
Vector types, built in operators and
functions, literals

Vector types defined,
 no operators or functions

Memory[13] [14]
Asynchronous memory copying and pre
fetch functions

No asynchronous
memory copying and
 pre fetch functions

C++ features Not supported
Limited features
 Supported

API [14] OPENCL API CUDA Driver API

Setup [15]

-Initialize platform
-Get devices
-Choose device
-Create context
-Create command queue

-Initialize driver
-Get device(s)
-(Choose device)
-Create context

Device and host memory buffer
setup[13]

-Allocate host memory
-Allocate device memory for input
-Copy host memory to device memory
-Allocate device memory for result

-Allocate host memory
-Allocate device memory for input
-Copy host memory to device memory
-Allocate device memory for result

Initialize kernel

-Load kernel source
-Create program object
-Build program
-Create kernel object bound to kernel
function

-Load kernel module
-(Build program)
-Get module function

Execute the kernel
-Setup kernel arguments
-Setup execu6on configuration
-Invoke the kernel [15]

-Setup kernel arguments
-Setup execu6on configuration
-Invoke the kernel

Copy results to host Copy results from device memory Copy results from device memory
Cleanup Cleanup all set up above Cleanup all set up above

VIII . CONCLUSION
Advancements in the field of GPGPU’s have led to the
wide use of GPGPU’s in high intensity arithmetic
computations. It has led to the load sharing of the CPU and
has made it more easy and organized to allocate high
computation oriented task to the GPU and rest to the CPU.
Most of the algorithms that are serial in nature can be
converted to parallel form and run on the GPU. Everybody
today, especially in the computation heavy application
industry is working towards using parallel architecture to
perform operations and complete tasks faster. Use of
GPGPU’s has made our systems more efficient and the use
of processor is made to the fullest.

REFERENCES
[1] Mario Cannataro , Domenico Talia , Pradip K. Srimani “Parallel

data intensive computing in scientific and commercial applications”,
Parallel Computing, 2011, ELSVIER, p 02.

[2] J. Nickolls and W. J. Dally, “The GPU Computing Era,” IEEE
2010 Micro, vol. 30, pp. 56–69.

[3] David E. Womble, Sudip S. Dosanjh, Bruce Hendrickson,Michael A.
Heroux, Steve J. Plimpton, James L. Tomkins,David S. Greenberg,
“Massively parallel computing: A Sandia perspective”, Parallel
Computing 1999, E:SEVIER,pp 01-03.

[4] Jingweijia Tan , Yang Yi , Fangyang Shen , Xin Fu “Modeling and
characterizing GPGPU reliability in the presence of soft errors”
Parallel Computing 2013, ELSEVIER IEEE 2007, pp 01-02, 521-
523.

[5] Nicholas Wilt , “8 Streaming Multiprocessors” Pearson Education
Inc, 2012.

[6] “General Purpose Computation on Graphics Processors (GPGPU)”
Website:
“http://graphics.stanford.edu/~mhouston/public_talks/R520-
mhouston.pdf”, [Accessed: April 14, 2014]

[7] Xiaoqing Tang, “Introduction to General Purpose GPU
Computing”, University of Rochester 2011, p 03.

[8] General-purpose computing on graphics processing units Website:
“http://en.wikipedia.org/wiki/General-
Purpose_Computing_on_Graphics_Processing_Units”, [Accessed:
May 05, 2014].

[9] Mohammad Reza Selim , Mohammed Ziaur Rahman , “Carrying on
the legacy of imperative languages in the future parallel computing
era”, ELSEVIER, 2013, pp 02-07.

[10] J. Diaz, C. Muñoz-Caro and A. Niño” A Survey of Parallel
Programming Models and Tools in the Multi and Many-core Era”
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED
SYSTEMS, IEEE 2011, pp 01-05.

[11] “GPU COMPUTING: THE REVOLUTION ”, Website:
http://www.nvidia.com/object/cuda_home_new.html [Accessed:
April 4, 2014].

[12] Jianbin Fang, Ana Lucia Varbanescu and Henk Sips “A
Comprehensive Performance Comparison of CUDA and OpenCL”
pp 01-02.

[13] John D. Owens, Mike Houston, David Luebke, Simon Green, John
E. Stone, and James C. Phillips “GPU Computing” IEEE, 2008, pp
8-17.

[14] R. Amorim, G. Haase, M. Liebmann, and R. Weber dos Santos,
“Comparing CUDA and OpenGL implementations for a Jacobi
iteration,” Presented in IEEE Conference 2009, pp. 22–32.

[15] The Khronos OpenCL Working Group, “OpenCL - The open
standard for parallel programming of heterogeneous systems.”
Weblink: http://www.khronos.org/opencl [Accessed on April 5,
2014].

Prachi Goyal Juneja et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4552-4555

www.ijcsit.com 4555

