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Abstract- Email communication has gained lots of importance 
in the world lately. With the boundaries increasing in 
dimensions, it has become tough to rely on physical medium of 
communication due to delays. Internet being available 
anywhere and everywhere makes it convenient and gives 
portability and flexibility to work from multiple locations.  
GPGPU’s have decreased the processing time and made the 
work faster and more usable. To gain most out of the 
GPGPU’s, one needs to understand the architecture of the 
same and also the terminologies used and the programming 
languages used. 
Keywords - GPGPU, graphics processing unit, parallel 
processing, parallel programming, OpenCL, Cuda. 
 

I. INTRODUCTION 
With the increase in computer usage around the globe and 
dependency structure routing towards computer at each 
stage, it is utmost important to make full and proper use of 
the CPU and provide maximum efficiency to the user. One 
can see the use and application of software devices in every 
walk of life: Science, Medicine, Education, Astronomy, 
Molecular Physics, and Neural Networks. With the increase 
in applications, the complexity increases and for coping up 
with a world where time is money, one needs to understand 
the importance of each and every second rather every nano-
second.  The information is nowadays stored in digital 
memories in enormous sizes that is rapidly growing. The 
challenge is to extract the relevant piece of information 
quickly. Hence we see the growth of data intensive 
applications [1][2]. Such applications can benefit from 
parallel computing in improving performance and for better 
data management.  
Parallel Computing is use of multiple computer resources at 
the same time to solve a computation problem. In parallel 
computing a problem is broken down into various parts and 
each part is solved concurrently. A series of instructions 
from each part are executed simultaneously on different 
processors and an overall control mechanism is used. 
In the real world where most of the events are uncertain it 
is most likely to use parallel computation instead of serial. 
One can see the wide use of parallel computing in the field 
of : galaxy formations, climate change, rush traffic hours, 
weather, defense, Geology, data mining, financial 
modeling, graphics and the list goes on. Some of the major 
benefits of using parallel computing are: 
I. Helpful in solving larger problems 

II. Provides concurrency 
III. Use of non local resources 
IV. Saves time and money 

II. EVOLUTION OF PARALLEL COMPUTING 
For a long time parallel computing [2] went unnoticed, as 
many thought it will never cope up with the computing 
scenario. During the 19th century parallel computing started 
evolving; [3] one can go back to the 1980’s for the 
beginning of parallel computing. The major reasons for 
parallel computing evolution during this time are: 

I. Advances in the hardware 
II. Growth of research and development 

III. Algorithms supporting parallel machines 
Very rapidly we saw that over the years parallel computing 
slowly and steadily evolved and took shape. It was since 
2010 that GPU became an important component of the PC, 
initially for good resolution in games, and media.  Till now 
data used to flow from the CPU to the GPU. Then 
gradually there were developments in the data transport 
technologies and the one way data floe became two way 
data flow.  Thus very rapidly the technology progressed in 
the recent past and the GPU usage was actively improved 
and increased from just a drawing tool to a very efficient 
processing unit. 
 

III. WHAT IS GPGPU? 
GPGPU [2] stands for General-purpose computing on 
graphics processing units. GPGPU often termed as GPU, is 
the use of graphic processing unit along with the CPU to 
fasten scientific, engineering and enterprise applications. 
GPU accelerated computing shows unmatchable increase in 
application performance. This is done by allocating the 
compute intensive portions of the task or application to the 
GPU, while the remaining code runs on the CPU.  

 
Fig. 1 CPU GPU code distribution 
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A CPU has few cores to carry out sequential serial 
processing whereas in case of GPU there are thousands of 
cores, smaller and more efficient. These are designed to 
handle multiple tasks simultaneously. This is why GPU’s 
can run algorithms 100 times faster than CPU’s. 
Algorithms that can be executed on GPGPU’s should have 
the following two properties: 
i. Data Parallelism: Data parallel means that an operation 

can be performed on different data elements 
simultaneously by a processor. 

ii. Throughput Intensive: Since there are high 
computations involved, the amount of data elements is 
in abundance and the algorithm will process them in 
parallel. 

The best suited and widely used area of GPGPU’s 
remained to be pixel- based applications such as video and 
image processing, but with advancement in the GPGPU 
field applications that have heavy numerical computing and 
linear algebra operations are also well suited for GPGPU 
technology. 
Some areas where GPGPU based applications are widely 
used are: Research, Supercomputing, Defense and 
Intelligence, Finance, Fluid Dynamics, CAD, Automations, 
Animation, Simulation, Media, Oil and Gas, Biology, 
Chemistry and the list is endless. 
 

IV. GPGPU ARCHITECTURE 
A GPGPU consists of large number of streaming 
multiprocessors(SM), which can be increased in number. 
These SM’s are connected to the Interconnection network 
through which they can access multiple memory 
controllers. [4] 

 
Fig. 2 GPGPU architecture 

When an application code is given to the processor, the 
serial code is executed by the CPU and the compute 
intensive code is passed on to the GPU where stream 
processing occurs in parallel. 
Each SM contains: [5] 
 Thousands of registers to be allocated to execution 

threads 
 Caches 

o shared memory 
o constant cache 

o texture cache 
o L1 cache 

 Warp schedulers 
 Stream Processors to carry out operations 
  

 
Fig. 3  GPGPU architecture 

 
Figure 3 depicts a general architecture of GPU, some high 
end GPU’s can have additional parts as well.  
 

V.  GPGPU: BASICS AND ITS FEATURES 
GPGPU’s are great for data parallelism. They are designed 
for tasks that are highly parallel. The GPU architecture as 
discussed above is ALU heavy, i.e., there is lots of compute 
power and multiple vertex and pixel pipelines are available. 
GPU’s are designed to stream data, they hide memory 
latency.  The GPGPU terminology is discussed here:  
 Arithmetic Intensity: It refers to computations or math 

operations.  
 Streams: A set of records that have to undergo the 

same type of computation. They provide data 
parallelism. 

 Kernels: Functions applied to each element in the 
stream. The elements in a stream should be 
independent of each other. 
 

The applications targeted to be run on GPU should have: 
 High parallelism 
 High arithmetic intensity 
 Minimum dependency between data elements 
 Huge data sets 
 Lot of work to be done without CPU intervention 
 
Before writing code for any application an algorithm is set 
into place. These CPU algorithms are to be mapped with 
the GPU. The various mapping constructs are: 
 Basics: [6] 

o Arrays/ streams Textures 
o Parallel loops Quads 
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o Loop body  vertex + fragment program 
o Output arrays  render targets 
o Memory read  texture fetch 
o Memory write frame buffer write 

 Controlling the parallel loop:[6] 
o Rasterization = Kernel Invocation 
o Texture Coordinates = Computational Domain 
o Vertex Coordinates = Computational Range 

As discussed the GPU’s follow the SIMD (Single 
Instruction Multiple Data) [7] execution model.  If you take 
a closer view at the memory model it follows shared 
memory access. At the programming model level we see a 
wide use of C/C++ along with the extensions to do 
programming of GPGPU’s. CUDA and OPENCL are two 
famous programming forms that support the same.  
Each technology comes with its ups and downs and so is 
the case with GPGPU programming.  It has some 
advantages as well as disadvantages, though the advantages 
take a head over the disadvantages, but it’s necessary to be 
aware of all the pros and cons .[7]  
Advantages:  
 Fast  
 Energy efficient 
 Cheap 
 Load sharing of CPU 
Disadvantages 
 Comparatively hard to program 
 Not all algorithms might necessarily have speedup 
 The industry needs to mature more 
 

VI . PARALLEL PROGRAMMING LANGUAGES 
GPGPU’s were designed mainly for graphics and later the 
multi-core concept spread widely to computational 
problems. GPU’s can process independent pieces of tasks 
in parallel. GPGPU’s are mainly used for stream 
processing, i.e., similar computations to be applied on 
different set of data in parallel. One important point to be 

noted is that GPGPU’s never have stared data,[8] because 
processing is performed in parallel and independently. 
Since GPGPU is used widely for applications that are 
critical in nature, hence they are bound to have high 
arithmetic intensity. If it’s not so then the delay in 
accessing memory will result in computational delay. The 
computations performed by the GPU are generally handled 
by the CPU [9]. Parallel computing systems today have 
more than one CPU or GPU in a single machine for faster 
computation and performance. In the beginning of the CPU 
+ GPU systems, languages with an extension of C like 
Brook and Cg were used [10]. 
The most widely used GPGPU computing language present 
today is OpenCL (Open Computing Language).  OpenCL 
provides framework that is usable for writing programs 
over heterogeneous platforms having CPU’s, GPU’s and 
other processors. It includes a programming language to 
write kernels for computation. OpenCL has a feature 
available to support task parallel programming patterns, 
which are required for multicore architecture.[9] 
Another dominant framework available for parallel 
computing is Nvidia’s CUDA(Compute Unified Device 
Architecture). The CUDA platform is available for users 
through libraries and extension to standard languages like 
C, C++ and Fortran.  The CUDA programs contain the 
conventional language host code and GPU device functions 
[11]. In CUDA the programmer is not responsible for 
thread management, it is done implicitly. 
 

VII. COMPARATIVE STUDY: OPENCL AND CUDA 
With the advent of parallel programming languages, one 
needs or make a decision about choosing the language as 
per the requirement and usability.  Cuda and OpenCL are 
similar in many respects like both are focused on data 
parallel computation model [12]. Both use C based 
languages for device programming.  Apart from the 
similarities there is a huge range of differences also. 

 OPENCL  CUDA 

What is it? 
Hardware architecture, programming 
language, API, SDK and tools 

Open API and language specification 

Open technology? Not open Open and royalty free 
Started in? 2006 2008 
SDK Vendor Nvidia Implementation Vendor 
Multiple vendors No Yes 
Vendors Nvidia Nvidia, Apple, IBM, AMD 
Device Support Only Nvidia Heterogeneous device support 
Terminology(Execution) [12] NDRange Grid 
 Workgroup Threadblock 
 Workitem Thread 
 Global ID Thread Id 
 Block Id Block Index 
 Local ID Thread  Index 
Terminology (Memory) Host memory Host memory 
 Global Memory Global or device memory 
 Global memory Local memory 
 Global memory Texture memory 
 Local Memory Shared memory 
 Private memory Registers 
Programming   
Language versions  Base language versions are defined [15] Only C and C++ 
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 OPENCL  CUDA 
 features supported 

Work items access Through built in functions 
Through built in  
variables 

Vector types 
Vector types, built in operators and  
functions, literals  

Vector types defined, 
 no operators or functions 

Memory[13] [14] 
Asynchronous memory copying and pre 
fetch functions  

No asynchronous  
memory copying and 
 pre fetch functions  

C++ features Not supported 
Limited features 
 Supported 

API [14] OPENCL API CUDA Driver API 

Setup [15] 

-Initialize platform 
-Get devices 
-Choose device 
-Create context 
-Create command queue 

-Initialize driver 
-Get device(s) 
-(Choose device) 
-Create context 

Device and host memory buffer 
setup[13] 

-Allocate host memory 
-Allocate device memory for input 
-Copy host memory to device memory 
-Allocate device memory for result 

-Allocate host memory 
-Allocate device memory for input 
-Copy host memory to device memory 
-Allocate device memory for result 

Initialize kernel 

-Load kernel source 
-Create program object 
-Build program 
-Create kernel object bound to kernel 
function 

-Load kernel module 
-(Build program) 
-Get module function 

Execute the kernel  
-Setup kernel arguments 
-Setup execu6on configuration 
-Invoke the kernel [15] 

-Setup kernel arguments 
-Setup execu6on configuration 
-Invoke the kernel 

Copy results to host Copy results from device memory Copy results from device memory 
Cleanup Cleanup all set up above Cleanup all set up above 
 

VIII . CONCLUSION 
Advancements in the field of GPGPU’s have led to the 
wide use of GPGPU’s in high intensity arithmetic 
computations. It has led to the load sharing of the CPU and 
has made it more easy and organized to allocate high 
computation oriented task to the GPU and rest to the CPU. 
Most of the algorithms that are serial in nature can be 
converted to parallel form and run on the GPU. Everybody 
today, especially in the computation heavy application 
industry is working towards using parallel architecture to 
perform operations and complete tasks faster. Use of 
GPGPU’s has made our systems more efficient and the use 
of processor is made to the fullest.  
 

REFERENCES 
[1]  Mario Cannataro , Domenico Talia , Pradip K. Srimani  “Parallel 

data intensive computing in scientific and commercial applications”, 
Parallel Computing, 2011, ELSVIER,  p 02. 

[2]  J. Nickolls and W. J. Dally, “The GPU Computing Era,” IEEE  
2010 Micro, vol. 30, pp. 56–69. 

[3]  David E. Womble, Sudip S. Dosanjh, Bruce Hendrickson,Michael A. 
Heroux, Steve J. Plimpton, James L. Tomkins,David S. Greenberg, 
“Massively parallel computing: A Sandia perspective”, Parallel 
Computing 1999,  E:SEVIER,pp 01-03. 

[4]  Jingweijia Tan , Yang Yi , Fangyang Shen , Xin Fu “Modeling and 
characterizing GPGPU reliability in the presence of soft errors” 
Parallel Computing 2013, ELSEVIER IEEE 2007, pp 01-02, 521-
523. 

[5]  Nicholas Wilt , “8 Streaming Multiprocessors” Pearson Education 
Inc, 2012. 

[6]  “General Purpose Computation on  Graphics Processors (GPGPU)” 
Website: 
“http://graphics.stanford.edu/~mhouston/public_talks/R520-
mhouston.pdf”, [Accessed: April 14, 2014] 

[7]  Xiaoqing Tang, “Introduction to General Purpose GPU 
Computing”, University of Rochester 2011, p 03. 

[8]  General-purpose computing on graphics processing units Website: 
“http://en.wikipedia.org/wiki/General-
Purpose_Computing_on_Graphics_Processing_Units”, [Accessed: 
May 05, 2014]. 

[9]  Mohammad Reza Selim , Mohammed Ziaur Rahman , “Carrying on 
the legacy of imperative languages in the future parallel computing 
era”, ELSEVIER, 2013, pp 02-07. 

[10]  J. Diaz, C. Muñoz-Caro and A. Niño” A Survey of Parallel 
Programming Models and Tools in the Multi and Many-core Era” 
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED 
SYSTEMS, IEEE 2011, pp 01-05. 

[11]  “GPU COMPUTING: THE REVOLUTION ”, Website: 
http://www.nvidia.com/object/cuda_home_new.html [Accessed: 
April 4, 2014]. 

[12]  Jianbin Fang, Ana Lucia Varbanescu and Henk Sips “A 
Comprehensive Performance Comparison of CUDA and OpenCL” 
pp 01-02. 

[13]  John D. Owens, Mike Houston, David Luebke, Simon Green, John 
E. Stone, and James C. Phillips “GPU Computing” IEEE, 2008, pp 
8-17. 

[14]  R. Amorim, G. Haase, M. Liebmann, and R. Weber dos Santos, 
“Comparing CUDA and OpenGL implementations for a Jacobi 
iteration,” Presented in IEEE Conference 2009, pp. 22–32. 

[15]  The Khronos OpenCL Working Group, “OpenCL - The open 
standard for parallel programming of heterogeneous systems.” 
Weblink: http://www.khronos.org/opencl [Accessed on  April 5, 
2014]. 

 

Prachi Goyal Juneja et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4552-4555

www.ijcsit.com 4555




